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Abstract
The analogue of the classical Onsager theory of entropy production is
systematically derived for weakly irreversible processes in open quantum
systems with finite-dimensional Hilbert space. The dynamics is assumed
to be given by a quantum dynamical semigroup with infinitesimal generator
of Gorini–Kossakowski–Sudarshan type. The basic Spohn formula for
entropy production is used to obtain an expansion in terms of powers of
the deviation of the initial state relative to the final stationary state of
irreversible dynamics. To this end, an appropriate Lie series is constructed
from a particular symmetrization procedure applied to the ordinary Campbell–
Hausdorff expansion. In this way, only Hermitian contributions by higher-
order commutators are generated, which allow an identification with so-
called generalized Onsager coefficients. The explicit derivations concentrate
on second-, third- and fourth-order coefficients, whereas complete detailed
expressions are worked out for second and third order. In a suitable coherence-
vector representation of density matrices the results can be given in terms of
the dynamical parameters fixing the infinitesimal semigroup generator and in
terms of symmetric and antisymmetric structure constants of the Lie algebra
of SU(N). As an illustration, an application to generalized Bloch equations
for two-level systems is studied, where the Onsager-like expansion can be
compared with exact results for entropy production. We find that convergence
is good even for rather large deviations between initial and final state if the
calculation includes second- and third-order coefficients only. The formalism
presented in this paper generalizes restrictions on admitted final states adopted
in much simpler earlier treatments to the most general case of arbitrary unique
final states of irreversible processes.
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1. Introduction

Ever since the appearance of two seminal papers by Onsager [1] the concept of entropy
production relative to a stationary state has played an important role in classical nonequilibrium
thermodynamics [2, 3]. In the so-called weakly irreversible regime involving only modest
deviations from the stationary state entropy production is given by a quadratic form in
generalized forces and certain coefficients later named ‘Onsager coefficients’. Within this
phenomenological theory, under physically reasonable assumptions, the coefficient matrix is
shown to be positive (‘positive’ will also be used in place of ‘non-negative’ throughout this
paper). However, in concrete dynamical models the proof of positivity is far from being
trivial [4]. Furthermore, in contrast to general belief the reciprocity relations due to symmetry
of the coefficient matrix are not universally valid [1, 5]. In particular, even the necessity
of assuming microreversibility, a symmetry attributed to stationary two-point correlation
functions, has been questioned [6,7]. More than that, a theorem stating that entropy production
is minimal for processes close to a steady state has been disproved to be generally valid by
some concrete examples [7, 8].

After all, what certainly survives in general is the useful concept of positive entropy
production P in its original form given by

P =
∑
i

Ji Xi (1)

where {Ji} are the so-called generalized fluxes and {Xi} the corresponding generalized forces
inducing the fluxes. In the simplest approximation the dependence of fluxes upon forces has
been assumed to be linear,

Ji =
∑
k

Lik Xk (2)

with {Lik} being the phenomenological Onsager coefficients. This may be extended for
processes further away from a stationary state by allowing for higher-order terms,

Ji =
∑
k

Lik Xk +
∑
k,l

Likl Xk Xl +
∑
k,l,m

Liklm Xk Xl Xm + · · · (3)

and, correspondingly, entropy production will be given according to

P ∼=
∑
i,k

Lik Xi Xk +
∑
i,k,l

Likl Xi Xk Xl +
∑
i,k,l,m

Liklm Xi Xk Xl Xm (4)

with additional higher-order coefficients {Likl, Liklm}. So much for the classical case.
It may come as a surprise that an analogous quantum theoretic treatment is possible on

a more fundamental non-phenomenological level by using mathematically rigorous results
for quantum Markovian master equations. By ‘non-phenomenological’ we mean that, for
example, a local equilibrium hypothesis as used in the classical theory [2, 5] is not required
but may or may not even have a well defined meaning in the quantum context. This is evident
since the present theory is also able to deal with smaller systems such as one or a few atoms
or molecules interacting with radiation fields [20], where locality in the classical sense is
inappropriate. Since the relevant quantum equations provide a well defined approach to
either thermodynamic equilibrium or else, and much more general, to any stationary final
state, the neighbourhood of the latter can be investigated without resorting to any additional
phenomenological assumptions. In terms of the fundamental concept of quantum relative
entropy the corresponding positive functional allows the desired derivation of Onsager-like
coefficients.

In the related framework of completely positive quantum dynamical semigroup dynamics
for irreversible processes in open systems several papers witness the quantum analogy with the
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classical case. Important treatments refer to detailed balance condition for non-Hamiltonian
systems [9], entropy production for the Davies model of heat conduction [10], a quantum
open system as a model of a heat engine [11], general analysis of entropy production for
quantum dynamical semigroups [12] and a general account of irreversible thermodynamics
for quantum systems weakly coupled to thermal reservoirs [13]. Later, it could be shown
that a coherence-vector representation of Markovian master equations for N -level systems
is particularly suited to establish the close analogy to the classical formulae. For two-level
systems there is even an exact formula for entropy production in terms of length and scalar
product of the relevant vectors. However, in N dimensions a simple representation of the
second-order Onsager coefficient could only be obtained by assuming the central state to
be the unique final destination state of irreversible dynamics [14, 15]. Still within the same
assumptions it has recently been proven that second- and higher-order coefficients can be
deduced from time derivatives of functionals which otherwise are dynamical invariants under
Hamiltonian, unitary reversible dynamics [16].

What are still missing are explicit expressions for second- as well as higher-order
coefficients for general dynamical processes starting at an arbitrary initial state and ending
in a general final state different from the central one. Due to divergences of the involved
relative entropy for states characterized by singular density matrices the dynamics is restricted
to faithful states (invertible density matrices) only, and the initial state must be close enough
to the final stationary state in an appropriate sense to be specified later. These conditions are
sufficiently general to cover a wide range of applications, particularly also for final states of
thermodynamic equilibrium at finite temperatures.

It is the aim of this paper to close the above-mentioned gap by working out the mathematical
details in a systematic way. In the next section 2 a condensed summary of the necessary
settings for the underlying semigroup quantum dynamics and related entropy production
will be given. In section 3 the details of the symmetrization procedure of the Campbell–
Hausdorff (CH) expansion are worked out for Onsager coefficients up to fourth order. The
explicit calculation of the coefficients is then outlined in section 4 and detailed results up
to third order are given. Section 5 contains an application to irreversible dynamics in the
case of generalized Bloch equations for a two-level system where a comparison with an exact
solution is possible. Finally, the concluding section 6 discusses aspects of convergence of the
Onsager-type expansion with some outlook to remaining problems for more general dynamical
situations. Some mathematical and numerical details are postponed to appendices A–D.

2. Irreversible quantum dynamics and related entropy production

For an open quantum system coupled to its environment the dynamics may be very complicated
and is given, in general, by an integro-differential equation, a so-called Nakajima–Zwanzig
master equation [15, 17, 18]. For this general situation it is not even clear how to define a
universal notion of entropy production although some attempts and proposals have been made
in the case of concrete, rigorously solvable models [19–21]. It is only in the limiting case of
open systems relatively weakly coupled to very large reservoirs that a mathematically sound
definition could be established [12]. For this situation the dynamics is dictated by quantum
dynamical semigroups with completely positive dual or, equivalently in differential form, by
quantum Markovian master equations. There is a lot of experience showing that they cover a
very wide range of experimental relevance. Since there are numerous papers and reviews on
the subject (see, e.g., [15] and references therein) it seems sufficient to summarize here only
the necessary definitions and notions.

In the underlying setting time evolution carries an arbitrary initial state ρ of an open system
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into a unique final state σ . During the irreversible process the time-dependent state ρt evolves
according to a quantum dynamical semigroup �t ,

ρt = �t(ρ) �t = exp(Lt) �t�s = �t+s t, s � 0 (5)

lim
t→∞�t(ρ) = σ �t(σ ) = σ L(σ ) = 0. (6)

The associated master equation is given by

ρ̇t = L(ρt ) L = LH + LD (7)

where the dot denotes a time derivative, LH is the Hamiltonian and LD the relaxation-dissipation
contribution to L. For most applications it will be sufficient to consider a finite-dimensional
Hilbert space H with dim(H) = N < ∞ on which the density matrices {ρt } act. The semigroup
mappings �t leave the basic quantum mechanical properties of density matrices invariant or,
in other words, the von Neumann conditions of hermiticity, trace normalization and positivity
remain preserved at all times,

ρt = ρt
∗ Tr(ρt ) = 1 ρt � 0 t � 0. (8)

One cannot stress enough the importance of these conditions for any reliable physical
interpretation of results.

For the following derivations the most convenient and transparent explicit representation
of the infinitesimal generator L is given by the Kossakowski normal form [22]

L(ρt ) = −i[H, ρt ] + 1
2

M∑
i,k=1

aik{[Fi, ρt Fk] + [Fi ρt , Fk]} (9)

Fi = Fi
∗ Tr(Fi) = 0 Tr(FiFk) = δik

H = H ∗ Tr(H) = 0 A = {aik}M1 � 0 M = N2 − 1.
(10)

The details of relaxation are fully determined by the matrix elements of A, which also fix the
final state σ due to (6). Two points of view can be taken. On the one hand, the elements
may be chosen according to some phenomenological reasoning but positivity sets restrictions
through semi-inequalities. Just to quote a simple example for two-level systems, the well
known Bloch equations of magnetic resonance are obtained by setting a11 = a22 = 1/2T1,
a33 = 1/T2 − 1/2T1, a12 = −i M̃/

√
2T1 and a13 = a23 = 0, where T1 and T2 are the

longitudinal and transverse relaxation times restricted by T1 � T2/2, and M̃ is the equilibrium
magnetization [15]. On the other hand, a determination from first principles is possible if the
explicit form of the total Hamiltonian for the closed system composed of the open one and the
reservoir including their mutual interaction is given. Then, by tracing back structure (9), (10)
to the fundamental Davies theory of the weak-coupling limit [23], the elements {aik} can be
expressed in terms of Fourier transforms of reservoir correlation functions [15].

For a formulation of entropy production a few remarkable properties of quantum entropy
must be mentioned [24–26]. Particularly the associated relative entropy

S(ρ/ρ ′) = Tr{ρ(ln ρ − ln ρ ′)} � 0 ∀ρ, ρ ′ ∈ � (11)

provides a desired measure to assess entropy of a state ρ relative to another state ρ ′ where � is
the state space of all normalized trace-class operators in H. In addition, S is jointly convex on
� [26]. This provides the basis for the second most important property of contractivity under
completely positive semigroup mappings �t , as proven by Lindblad [27],

S(�t+s(ρ)/�t+s(ρ
′)) � S(�s(ρ)/�s(ρ

′)) t � s. (12)

As a consequence, by choosing ρ ′ as invariant state σ and using (5) and (6), S(ρt/σ ) is a
Lyapunov functional on � or, in other words, a monotonically decreasing function of time for
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any given initial state ρ with dynamics �t . Taking into account these outstanding relations
Spohn, in a seminal paper, has succeeded in deriving the fundamental formula for entropy
production P in the form

P(ρ/σ) = −
[

d

dt
S(�t(ρ)/σ )

]
t=0

. (13)

Thus, P is entirely determined by the initial state ρ and the infinitesimal generator L since (13)
can be rewritten as

P = Tr{L(ρ)(ln σ − ln ρ)}. (14)

Obviously, the validity requires the dynamics to involve only faithful states, that is states
with existing inverse. In addition, if a series expansion analogous to (4) is supposed to yield
satisfactory values already through the lowest-order terms, ρ must be restricted to the vicinity
of σ in the sense that, for example, the trace norm ‖ρ − σ‖ does not exceed a prescribed
tolerance, as will be quantified subsequently. Therefore, we set ρ − σ = ω to obtain

ρ = σ + ω L(ρ) = L(ω) Tr(ω) = 0 (15)

and the final form of (14) reads

P = Tr{L(ω)(ln σ − ln(σ + ω)}. (16)

It has been shown elsewhere [9,14,15] that the desired series expansion is obtained in a natural
way by going over to coherence-vector representation for density operators defined by

ω =
M∑
i=1

xi Fi σ = 1

N
1I +

M∑
i=1

yi Fi M = N2 − 1 (17)

where a special representation of the set of {Fi}-matrices as a straightforward generalization
of the Pauli matrices to higher dimension will be used. The Lie algebra of these infinitesimal
generators of SU(N) is characterized by

[Fi, Fk] = i
M∑
l=1

fikl Fl {Fi, Fk} = 2

N
1Iδik +

M∑
l=1

dikl Fl. (18)

{·, ·} denotes an anticommutator, dikl are completely symmetric and fikl completely
antisymmetric real structure constants. Up to N = 4 matrices and constants are explicitly
listed in [15].

Since L(ω) is linear in ω the second- and higher-order Onsager coefficients must be
obtained from an expansion of the logarithm in (16). The main problem arises from non-
commutativity of σ with ρ but also from the slow convergence of the log series. It turns out
that the best expansion by far is a modified CH series as will be outlined in the following
section.

3. Symmetrized Campbell–Hausdorff expansion

According to the general formula (16) a power series expansion of ln(σ +ω) yields real values
for P in a finite-order approximation only if single contributions in any order are Hermitian.
To achieve this in a CH expansion the following symmetrization procedure will be neccessary.
In a first step one transforms the sum into a product,

ln(σ + ω) = ln(σ η) η = 1I + ε ε = σ−1ω. (19)

Next, we set

σ = eu η = ev (20)
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to obtain the leading terms in the CH series [28, 29] as

z(u, v) = ln(eu ev) = u + v + 1
2 [u, v] + 1

12 {[[u, v], v] + [[v, u], u]}
− 1

24 [[[u, v], v], u] + · · · . (21)

However, since an expansion in powers of ω implies expansion of

v = ln(1I + ε) ∼= ε − 1
2ε

2 + 1
3ε

3 − · · · (22)

the single terms are not Hermitian since ε �= ε∗ for noncommuting σ−1 and ω. Therefore,
consider in place of (19) the adjoint representation

ln(σ + ω) = ln(η∗ σ) η∗ = 1I + ε∗ ε∗ = ω σ−1 (23)

and set

η∗ = ev
∗

σ = eu (24)

to obtain the counterpart of (21) in the form

z(v∗, u) = ln(ev
∗
eu) = v∗ + u + 1

2 [v∗, u] + 1
12 {[[v∗, u], u] + [[u, v∗], v∗]}

− 1
24 [[[v∗, u], u], v∗] + · · · . (25)

Now, in symmetrized form formula (16) is rewritten as

P = Tr{L(ω)D(σ + ω)} (26)

D(σ + ω) = ln σ − 1
2 {ln(σ η) + ln(η∗σ)} (27)

or, equivalently,

D(u, v) = u − 1
2 {z(u, v) + z(v∗, u)}. (28)

The different contributions by successively iterated commutators will be denoted byD(ν)(u, v),
and we have

D(u, v) =
4∑

ν=1

D(ν)(u, v) (29)

D(1)(u, v) = − 1
2 (v + v∗) (30)

D(2)(u, v) = 1
4 [(v − v∗), u] (31)

D(3)(u, v) = 1
24 {[v, [u, v]] + [v∗, [u, v∗]] + [u, [(v + v∗), u]]} (32)

D(4)(u, v) = 1
48 {[[[u, v], v], u] + [[[v∗, u], u], v∗]}. (33)

Since L(ω) is linear in ω an expansion of v up to nth order in ε(ω) = σ−1ω provides Onsager
coefficients up to order (n + 1). Inserting (22) into (30)–(33) and labelling powers in ε by
subindex µ in D(ν)

µ (u, ε) yields the expressions below.

D
(1)
1 (u, ε) = − 1

2 (ε + ε∗)
D

(1)
2 (u, ε) = 1

4 (ε
2 + ε∗2

)

D
(1)
3 (u, ε) = − 1

6 (ε
3 + ε∗3

)

(34)

D
(2)
1 (u, ε) = − 1

4 [u, (ε − ε∗)]
D

(2)
2 (u, ε) = 1

8 [u, (ε2 − ε∗2
)]

D
(2)
3 (u, ε) = − 1

12 [u, (ε3 − ε∗3
)]

(35)

D
(3)
1 (u, ε) = 1

24 [u, [(ε + ε∗), u]]

D
(3)
2 (u, ε) = 1

24 {[ε, [u, ε]] + [ε∗, [u, ε∗]]} − 1
48 [u, [(ε2 + ε∗2

), u]]

D
(3)
3 (u, ε) = 1

24 {[[u, ε], ε2] + [[u, ε∗], ε∗2]} + 1
72 [u, [(ε3 + ε∗3

), u]]

(36)
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D
(4)
1 (u, ε) = 0

D
(4)
2 (u, ε) = 1

48 {[[[u, ε], ε], u] + [[[ε∗, u], u], ε∗]}
D

(4)
3 (u, ε) = 1

48 [u, [[u, ε], ε2]] + 1
96 {[ε∗2

, [[ε∗, u], u]] + [ε∗, [[ε∗2
, u], u]]}.

(37)

With the above definitions P becomes

P =
3∑

µ=1

4∑
ν=1

Tr{L(ω)D(ν)
µ (u, ε)} (38)

and provides the desired representation for computing Onsager coefficients.

4. Onsager coefficients

Going over to coherence-vector representation we write, from now on,ω = ω(x) and ε = ε(x)

and note that both are linear in x. Therefore, L(ω(x)) is also linear in x and D(ν)
µ (u, ε(x))

are homogeneous polynomials of degree µ in the vector components for all ν. The norm
‖x‖2 = Tr(ω∗(x)ω(x)) is a measure for the deviation of initial from final state whereas in
analogy to the classical case the components {xi}M1 take over the role of generalized forces
which drive the system back to its stationary state. Now, the second-, third- and fourth-order
contributions to quantum entropy production P are given by

P = p(2)(x) + p(3)(x) + p(4)(x) (39)

whereas comparison with the common notation (4) and with (38) identifies the coefficients
through

p(2)(x) =
4∑

ν=1

Tr{L(ω(x))D(ν)
1 (u, ε(x))} =

∑
i,k

Lik xi xk (40)

p(3)(x) =
4∑

ν=1

Tr{L(ω(x))D(ν)
2 (u, ε(x))} =

∑
i,k,l

Likl xi xk xl (41)

p(4)(x) =
4∑

ν=1

Tr{L(ω(x))D(ν)
3 (u, ε(x))} =

∑
i,k,l,m

Liklm xi xk xl xm. (42)

Here and in all the following formulae the summations are understood to go from 1 to M .
Before evaluating the traces in (40)–(42) in detail all quantities must be transformed into

vector representation. For the dynamical part one obtains [15]

L(ω(x)) =
∑
i,k

gik xk Fi gik = qik + rik (43)

wheregik are matrix elements of the general evolution matrix [15,30] comprising a Hamiltonian
contribution qik from LH and a relaxation part rik from LD. The explicit relations in terms of
the original quantities defining generator L in (9) are given by

qik = −
∑
l

fikl hl hl = Tr(HFl) (44)

rik = − 1
4

∑
l,m,n

(l�m)

(2 − δlm)(filn fkmn + fimn fkln )Re (alm)

+ 1
2

∑
l,m,n

(l<m)

(fimn dkln − filn dkmn ) Im (alm). (45)



1292 K Lendi and A J van Wonderen

Furthermore, one needs

σ−1 = a0 1I +
∑
l

al Fl (46)

u = ln σ = b0 1I +
∑
l

bl Fl. (47)

Note again that for any matrix W = W ∗ with representation W = w0 1I +
∑

l wl Fl the
coefficients are obtained using (10) from w0 = 1

N
Tr(W) and wl = Tr(W Fl). Finally, for

ε(x) = c0 1I +
∑
l

cl Fl (48)

equations (46) and (47) yield

c0 = 1

N
(a,x) cl = a0 xl +

1

2

∑
i,k

ai xk zikl (1 � l � M) (49)

where (·, ·) denotes the scalar product and zikl are complex structure constants derived
from (18), namely

Fi Fk = 1

N
1Iδik +

1

2

∑
l

ziklFl zikl = dikl + ifikl . (50)

With all the above relations formulae (40)–(42) can be evaluated. The calculations are
straightforward but quite lengthy, such that only the final results for the second- and third-
order Onsager coefficient will explicitly be given below whereas an illustrative example is
worked out in appendix A:

Lik = −a0 rik − 1

2

∑
l,m

{
dilm am +

1

2
bm

∑
n,p

(
flnm finp ap − a0

3
flnp fimn bp

−1

6
flnp bp

∑
q,r

fmnr dirq aq

)}
glk. (51)

Note that in the classical case the Onsager symmetry relations among the coefficients are
attributed to properties of equilibrium [1, 5] and nonequilibrium fluctuations [31]. Here, the
situation turns out to be more complicated. Analogous fluctuations do exist in the quantum
case and, according to the Davies theory [13, 15, 23], the elements {alm} of the relaxation
matrix are given in terms of Fourier transforms of stationary reservoir correlation functions,
but due to (45)–(47) the relationship with Lik is nonlinear and nonsymmetric, in general.
However, since the total contribution is a positive quadratic form the trivial transformation
Lik → (Lik + Lki)/2 leaves it invariant and restores the symmetry [5, 13].

For a better overview the lengthy third-order coefficient is given in decomposed form,
where, in analogy to the ν-decomposition in (29), we define

Likl =
4∑

ν=1

L
(ν)
ikl . (52)

The single contributions are as follows:

L
(1)
ikl = a0

N
ai rkl +

a2
0

4

∑
m

dikm gml +
1

2N
ai
∑
m,n

dkmn an gml

−1

8

∑
m,n,p

{fimp fknp + finp fkmp − dimp dknp − dinp dkmp }an gml
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+
1

16

∑
m,n,p

q,r

{(dirn dkpq − firn fkpq ) dnqm

+(dirp fkpq + dkpq firn ) fnqm }ar ap gml (53)

L
(2)
ikl = − 1

4N
ai

∑
m,n,p,q

fkqn fnpm aq bp gml +
a2

0

8

∑
m,n,p

fikn fmnp bp gml

+
a0

16

∑
m,n,p

q,r

(dipq fknp + dkpq fipn + dipn fkpq + dknp fipq ) fmnr aq br gml

− 1

32

∑
m,n,p,q

r,s,t

{dirs (dkpt fqrt − dqrt fkpt )

+firs (fkpt fqrt − dkpt dqrt )}fmnq as ap bn gml (54)

L
(3)
ikl = −a2

0

12

∑
m,n,p

finp fknm bm gpl − a0

24

∑
m,n,p

q,r

(fkrn fpqr + fnqr fkrp )dlmq am bn gpi

− 1

48

∑
m,n,p,q

r,s,t

frst fpqr (dlmt dknq − flmt fknq ) am an bs gpi

− a0

12N

∑
m,n,p,q

fkmn fnpq ai bm bp gql

− 1

24N

∑
m,n,p

q,r,s

dkmn fnpq fqrs ai am bp gsl − a2
0

48

∑
m,n,p

q,r

dikm fmnp fpqr bn bq grl

− a0

96

∑
m,n,p,q

r,s,t

(dkmp dinp + dimp dknp + fkpm fipn

+fipm fkpn ) fnqr frst am bq bs gtl − 1

192

∑
m,n,p,q,r

s,t,u,w

{(dimr dkpu + firm fkpu )dnru

+(dimr fkup + dkpu firm )fnru } fnqw fstw am ap bq bs gtl (55)

L
(4)
ikl = − 1

96

∑
m,n,p,q,r

s,t,u,w

fqrs fstu fnuw (dimr fkpt + dkpt fimr )am ap bq bw gnl. (56)

All quantities in the above formulae are known as soon as the dynamical generator L
is determined. The a- and b-coefficients in (46) and (47) can be calculated by taking into
account (6) and solving (9) for σ . Furthermore, the structure constants are obtained from
a systematic treatment outlined in [15]. The details will become more transparent from the
example treated in the following section.

5. Convergence test of entropy production for generalized Bloch equations

In order to have a transparent example of great physical importance we analyse the derived
coefficients in the framework of generalized Bloch equations. These are well known to
provide an adequate description of damping phenomena in various fields such as magnetic
resonance [32,33] and quantum optics [34–36]. For N = 2 we use an exact closed formula for
entropy production in terms of coherence vectors and compare numerical results with those
from an Onsager expansion. In particular, we will study the differences as a function of the
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initial deviation length ‖x‖ of ω(x). The time-dependent state will be denoted by

ρt = 1
2 1I + (vt ,F ) vt = (v1(t), v2(t), v3(t) )

T (57)

with initial and final vectors renamed,

v0 = x + y y = v∞. (58)

The most general Bloch equations for two-level systems admitted by completely positive
semigroup dynamics read [15]

v̇1(t) = −γ3 v1(t) + (α − ω0)v2(t) + (β − ω2)v3(t) −
√

2 λ

v̇2(t) = (α + ω0)v1(t) − γ2 v2(t) + (δ − ω1) v3(t) +
√

2µ

v̇3(t) = (β + ω2) v1(t) + (δ + ω1)v2(t) − γ1 v3(t) −
√

2 ν

(59)

or, in compact form,

v̇(t) = G v(t) + k G = Q + R k = −
√

2(λ,−µ, ν)T (60)

Q =
( 0 −ω0 −ω2

ω0 0 −ω1

ω2 ω1 0

)
R =

(−γ3 α β

α −γ2 δ

β δ −γ1

)
. (61)

A convenient parametrization has been introduced such that the original semigroup generator
L is expressed in terms of a Hamiltonian H and a relaxation matrix A,

H = 1
2

(
ω0 ω1 + iω2

ω1 − iω2 −ω0

)

A =



1
2 (γ1 + γ2 − γ3) α + iν β + iµ

α − iν 1
2 (γ1 + γ3 − γ2) δ + iλ

β − iµ δ − iλ 1
2 (γ2 + γ3 − γ1)


 (62)

where positivity A � 0 sets mutual restrictions among the parameters by semi-inequalities.
As orthonormal basis {Fi} the normalized Pauli matrices have been used,

F1 = 1√
2

(
0 1
1 0

)
F2 = 1√

2

(
0 −i
i 0

)
F3 = 1√

2

(
1 0
0 −1

)
. (63)

Note now that the final state vector y is determined from the stationary solution v̇t = 0 for
regular G,

y = v∞ = −G−1k σ(y) = 1
2 1I + (y,F ). (64)

For a given final state also vectors a and b in (46) and (47) can be given analytically. To find
a one proves that

σ(y) σ (−y) = D(σ) 1I (65)

where the determinant D(σ) is

D(σ) = 1
4 (1 − 2 y2) y = ‖y‖ = (y2

1 + y2
2 + y2

3 )
1/2. (66)

Thus, the inverse σ−1 = a0 1I + (a,F ) is determined from

σ−1 = 1

D(σ)
σ(−y) a0 = 2

1 − 2 y2
a =

(
4

2 y2 − 1

)
y. (67)

The logarithm is derived in appendix B,

ln σ = b0 1I + (b,F ) b0 = 1
2 ln( 1

4 − 1
2 y

2) b =
(√

2

y
tanh−1(

√
2 y)

)
y. (68)
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Figure 1. Solutions of generalized Bloch equations (left) and comparison between exact and
approximate entropy production (right).

Finally, there is a simplification in formulae (53)–(56) since the symmetric structure constants
vanish for N = 2. This completes all necessary details for computing P in second and third
Onsager approximations, denoted from now on as

PO(x) = p(2)(x) + p(3)(x). (69)

On the other hand, there is the exact formula PE(x) for entropy production derived in
appendix C,

PE(x) = [f (v) − f (y)](x, (Q − R)y) − f (v)(x, R x) (70)

v = ‖x + y‖ f (z) =
√

2

z
tanh−1(

√
2 z) 0 � z <

1√
2
. (71)

The data of the following numerical example are listed in appendix D. Note that rescaling
the parameters by appropriate negative powers of ten adjusts them to experimentally realistic
values, for example, in the megahertz or gigahertz region of magnetic resonance.

The time-dependent solutions of (59) are displayed in the left-hand part of figure 1 whereas
PE and PO are plotted in the right-hand part. To be precise, according to the derived formulae
the values of P depend not only upon the norm ‖x‖ but also on the direction of x relative
to y. In order to make all Onsager coefficients effective vector x has been chosen along a
(−1,−1,−1)-direction, also because y has three negative components.

It is remarkable that the Onsager approximation yields surprisingly good values even
for relatively large initial-state deviations x from the final state. In particular, for x = 0.5,
which amounts to about five-sevenths of the radius of the Bloch-sphere the error in PO is less
than 12%. Tentatively assuming Boltzmann distributions for initial and final states a detailed
analysis of data yields a temperature increase by a factor of 4.6 during this irreversible process.
This shows that the Onsager expansion yields satisfactory values even for large temperature
differences and that, under the above conditions, initial and final states need not be close to
each other.

However, it must be stressed that the above temperature factor will depend on the
dimension N , and for N > 2 it could be considerably smaller. Of course, the relative order of
magnitude between second- and third-order contributions depends on x. In our example, up
to x = 0.5, p(3) amounts to less than 13% of p(2).

6. Discussion and conclusion

Although the procedure outlined in this paper provides a systematic derivation of Onsager
coefficients, in principle to arbitrary higher order, it must be considered formal so far.
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Figure 2. Temperature enhancement factor f = T2/T1 as function of q = >E/kT1 for an
equidistant four-level system admitting an error of about 3% in the lowest Onsager coefficients.

Therefore, some considerations of convergence will be necessary. First of all, mathematically
rigorous criteria for convergence of the CH expansion are difficult. Application of a known
result [38, 39] to our case states that the symmetrized series 1

2 (z(u, v) + z(v∗, u)) in (28) is
norm convergent for (‖u‖ + 1

2‖v + v∗‖) < 1
2 ln 2. However, this is sufficient but for our special

settings by far not always necessary. More subtle estimates would be extremely demanding
and are outside the scope of this paper, but findings of numerical estimates in lower dimensions
can be summarized as follows.

Cutting the series as in (21) and (25) is sufficient for practical applications if the spectral
norm of the inverse of σ does not exceed a given tolerance, say ‖σ−1‖ � δ, where, typically,
δ ∼= 20. Two properties contribute to this fact. First, commutators of increasing order show
a tendency to yield matrices with decreasing elements and, second, the numerical coefficients
in front will also rapidly decrease [40]. Of course, an additional error is introduced when
replacing v and v∗ by power expansion as in (22). Up to third order, the error in the norm
is less than about 3% if ‖(ε + ε∗)‖ � 1. Under such conditions, P can be obtained with an
error of less than 10%. At the same time, one may ask, for instance, about the magnitude of
the first neglected contribution to the second-order coefficient L(2) which would be calculated
from 1

720 [[[[u, 1
2 (ε+ε∗)], u], u], u] in the extended CH series [28,40]. Again, under the above-

mentioned conditions the error in L(2) is less than 1%. In any case, choosing ρ sufficiently
close to σ such that ‖ω‖ � 1 will improve the convergence towards a desired tolerance.

Finally, we would like to give an illustrative example for a simple, but frequently occurring
situation. Assume that initial and final states are Gibbs states with ρ = Z−1

1 exp(−H/kT1)

and σ = Z−1
2 exp(−H/kT2), T2 > T1, and the irreversible process ρ → σ takes place due

to appropriate change of external conditions imposed on the open system. Assume further for
simplicity that H has an equidistant spectrum with spacing >E. In this case the CH series
becomes trivial since [u, v] = 0, and the desired convergence can be set, for example, by
requiring the bound ‖ε‖ � 1

2 . Then, depending on the ratio between initial thermal energy kT1

and >E one can deduce the uppermost final temperature T2 or, else, the admitted temperature
enhancement factor T2/T1. Figure 2 shows a plot for N = 4 and demonstrates a considerable
increase in T2 with respect to T1 if kT1 increases with respect to the level spacing >E.

In conclusion, the presented formalism is valid for open system dynamics as determined
by quantum Markovian master equations. The analogy to the classical case is basically due to
the underlying assumptions that the open system S is weakly coupled to a very large reservoir
R, which is in a quasi-free state [13,15,23]. The ultimate consequence then is the existence of
a contractivity property (12), which allows a meaningful definition of entropy production [12].
Note also that a factorization of the initial state of the entire system Q = S ∪ R is crucial
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to this type of dynamics and that both systems start in states with entropy different from
zero. In contrast, for more general interactions and properties of R with resulting equations of
Nakajima–Zwanzig type the situation and, consequently, appropriate treatments may change
drastically. Then, even the common concepts of relative entropy, entropy flow and entropy
production have to be revisited [19–21]. Future investigations along these lines will certainly
be necessary.
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Appendix A

As an example calculate the (µ = 1, ν = 3)-contribution p
(2)
13 to the second-order term p(2)(x)

defined by

p
(2)
13 = Tr{L(ω(x)D(3)

1 (u, ε(x))}. (A.1)

From (43) we have

L(ω(x)) =
∑
s,t

gst xt Fs (A.2)

and from (36)

D
(3)
1 = 1

24 [u,X] X = [(ε + ε∗), u]. (A.3)

From (48) and (49) one finds

ε + ε∗ = w0 1I +
∑
l

wl Fl w0 = 2

N

∑
i

ai xi wl = 2 a0 xl +
∑
i,k

ai xk dikl . (A.4)

Using the commutator relations in (18) for F -matrices and (47) for u one obtains

X =
∑
l,m

wl bm[Fl, Fm] = i
∑
l,m,n

wl bm flmn Fn (A.5)

and, similarly,

D
(3)
1 = i

24

∑
l,m,n,p

wl bm bp flmn[Fp, Fn] = − 1

24

∑
l,m,n

p,q

wl bm bp flmn fpnq Fq. (A.6)

Using Tr(Fi Fk) = δik an intermediate result is

p
(2)
13 = − 1

24

∑
l,m,n

p,q,t

wl bm bp flmn fpnq gqt xt (A.7)

from which the final result, after inserting wl and renaming summation indices, is found to be

p
(2)
13 = a0

12

∑
i,k,l

m,n,p

(bm bp fimn flnp glk ) xi xk +
1

24

∑
i,k,l,m

n,p,q,r

(aq bm bp flnp fmnr diqr glk ) xi xk. (A.8)

All other terms are calculated by repeatedly applying the same technique of reducing multiple
products of F -matrices to linear forms.
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Appendix B

For regular σ the logarithm is given by

u = ln σ = ln(1I + 2 (y,F )) − (ln 2) 1I (B.1)

with series expansion

ln(1I + M) = M − 1
2M

2 + 1
3M

3 − 1
4M

4 + · · · (B.2)

for any regular matrix M with ‖M‖ � 1. Later, we will use the vector representation

u = ln σ = b0 1I + (b,F ) (B.3)

and the coefficients must be expressed in terms of y. To this end, set

M = 2 (y,F ) z =
√

2 y y = (y,y)1/2. (B.4)

Note that the F -matrices, as defined in (63), satisfy

{Fi, Fk} = 0 i �= k F 2
i = 1

2 1I ∀(i, k). (B.5)

Therefore, the powers of M reduce to

M2 = z2 1I M3 = z2 M, . . . (B.6)

giving rise to the series

ln(1I + M) =
(

1 +
1

3
z2 +

1

5
z4 + · · · +

1

n
zn−1 + · · ·

)
M (B.7)

−
(

1

2
z2 +

1

4
z4 +

1

6
z6 + · · · +

1

2n
z2n + · · ·

)
1I. (B.8)

In terms of known series [37],

1

2
ln

(
1 + z

1 − z

)
= tanh−1(z) = z +

1

3
z3 + · · · +

1

n
zn + · · · (B.9)

ln(1 − z2) = −
(
z2 +

1

2
z4 + · · · +

1

n
z2n + · · ·

)
(B.10)

one finds

ln σ =
[

1

2
ln

(
1

4
− 1

2
y2

)]
1I +

[√
2

y
tanh−1(

√
2 y)

]
(y,F ). (B.11)

Therefore, the desired coefficients are

b0 = 1
2 ln( 1

4 − 1
2y

2) b =
[√

2

y
tanh−1(

√
2 y)

]
y. (B.12)

Appendix C

The translation of (16),

P = Tr{L(ω(x))(ln σ − ln ρ)} (C.1)

into coherence vectors proceeds as follows. Recall the earlier definitions for initial and final
states,

ρ = ω(x) + σ ω = (x,F ) σ = 1
2 1I + (y,F ) (C.2)

ρ = 1
2 1I + (v,F ) v = x + y (C.3)
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and introduce the logarithms

ln ρ = w0 1I + (w,F ) ln σ = b0 1I + (b,F ). (C.4)

According to (B.12) we have

w = f (v) v b = f (y)y f (z) =
√

2

z
tanh−1(

√
2 z). (C.5)

Furthermore, L(ω) of (43) can be written as

L(ω(x)) =
∑
i

(Gx)i Fi. (C.6)

Inserting the above relations into (C.1) and using Tr(Fi Fk) = δik leads to

P =
∑
i

(Gx)i Tr{Fi((b − w),F )} = ((b − w),G x). (C.7)

Since G = Q+R, QT = −Q, one has (x,G x) = (x,R x), and the final formula is obtained
as

P = (f (y) − f (v)) (y,G x) − f (v)(x,R x). (C.8)

Appendix D

The following dimensionless values of dynamical parameters have been used for the example
in section 5.
ω0 = 10 ω1 = 8 ω2 = 4 γ1 = 3.8 γ2 = 3 γ3 = 2.5

α = 0.4 β = 1.1 δ = 0.6 λ = 0.009 µ = 0 ν = 0.3.
(D.1)

The matrix L(2) of rounded second-order coefficients Lik is obtained as

L(2) =
( 5.06 −1.22 −2.33

−0.46 6.10 −1.52
−2.05 −1.02 7.72

)
. (D.2)

As was to be expected in general, L(2) turns out to be non-symmetric positive with eigenvalues
{9.09, 6.58, 3.2}. Due to the associated quadratic form one can define the symmetrized
representation L̃(2) = 1

2 (L
(2) + L(2)T) having eigenvalues {9.13, 6.57, 3.17}.

It is interesting to note that the third-order coefficients Likl listed below are found to be
of comparable magnitude:

(ikl) Likl

(111) −0.67 (211) 1.82 (311) −0.88 (112) −4.65
(212) 2.12 (312) −4.62
(113) −0.50 (213) −0.10 (313) −2.12 (121) 1.93
(221) −3.19 (321) 5.63
(122) 1.21 (222) −0.65 (322) −2.49 (123) −0.57
(223) 3.40 (323) −3.99
(131) −0.25 (231) 0.71 (331) 4.33 (132) −2.48
(232) −2.79 (332) 5.01
(133) −1.69 (233) −0.46 (333) 2.08.

(D.3)

For completeness, the data of initial and final state are also given. The dynamics starts at
x = 0.61 or, else, v = ‖x+y‖ = 0.67 with vector v = (−0.4,−0.31,−0.44)T corresponding
to a density matrix

ρ =
(

0.19 −0.29 − i 0.22
−0.29 + i 0.22 0.81

)
S(ρ) = 0.11 (D.4)
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where S(ρ) = − Tr(ρ ln ρ) is the von Neumann entropy with bounds 0 � S � ln 2 =
0.69. The final destination state is reached at x = 0 or, else, y = 0.11 with vector
y = (−0.05,−0.04,−0.09)T equivalent to

σ =
(

0.43 −0.04 − i 0.03
−0.04 + i 0.03 0.57

)
S(σ) = 0.68. (D.5)

These data show that the dynamics starts not far from a pure state close to the surface of
the Bloch sphere (radius = 0.71) and ends almost in the centre, which belongs to maximum
entropy S = 0.69.
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